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This paper gives a further discussion of the analytical properties of both discrete 
and continuous Alfven wave spectra in an incompressible as well as compressible 
plasma. Although the continuous MHD modes produced by a well-behaved ini- 
tial perturbation decay according to a power law, some singular solutions exist 
and are found to behave differently. In particular, it is possible to exhibit the 
existence of a new continuous mode which decays exponentially, and not as an 
inverse power of time, and this exponential damping is not the consequence of a 
continuous variation of the magnetic field. Even the set of discrete magnetohydro- 
dynamic modes is shown to be empty unless certain conditions are satisfied. Next, 
we consider resistive modes and give explicit solutions for them which are valid 
in the neighborhood of the Aifven resonance layer and discuss their implications 
for plasma heating schemes. Finally, we study discrete and continuous Alfven 
wave spectra in a compressible plasma and discuss how they behave differently 
from those in an incompressible plasma. In particular, we show that though 
compressibility of the plasma is responsible for the slow mode continuum, strong 
compressibility will eliminate it. The discrete modes in a compressible plasma 
undergo an exponential damping even in an ideal plasma if the compressibility 
is strong. 

1. INTRODUCTION 

The propagation of Alfven waves in a nonuniform plasma has been 
a problem of much interest because of the use of Alfven waves for radio- 
frequency heating of a fusion plasma (Chen and Hasegawa, 1974) and the 
solar corona (Ionson, 1978). 

For an infinite, homogeneous plasma in an inhomogeneous magnetic 
field Bo(x), the governing equation becomes singular (Velikhov, 1962; 
Uberoi, 1972) for resonant frequencies co which correspond to the Alfven 
modes and the spectrum for the branch is a continuum. This problem is 
analogous to that of longitudinal electrostatic oscillations in an inhomogene- 
ous plasma considered by Barston (1964), and one may transfer many of 

1University of Central Florida, Orlando, Florida 32816. 

2121 
0020-7748/92/1200-2121506.50/0 �9 1992 Plenum Publishin 8 C~rporation 



2122 Shlvamoggi 

Barston's results straightaway to the present problem. Thus, if the magnetic 
field intensity is monotonic, the continuous spectrum is simple, though the 
associated eigenfunctions v(x) are then singular; one can construct a well- 
behaved solution of the original initial-value problem by integrally super- 
imposing these eigenfunctions over the whole spectrum, that is, 

Vk(X, t) = f ,  dk( CO) Vko,(X) e -i~ do9 

Further, we have an asymptotic estimate of Vk(X, t)',~ (I/ t)  exp[+ ikV.4(x)t], 
where k is the wavenumber of the modes, and VJ = B~/p. Thus, each infini- 
tesimally thin plasma layer supports Alfven waves corresponding to the local 
magnetic field intensity Bo(x), and these Alfven modes are completely out 
of coordination and hence are damped as the inverse power of time. Hence, 
if a surface Alfven wave is excited by an external coupler, the wave will be 
phase mixed by the Alfven resonance, and its energy can be dissipated in 
the plasma. However, some singular solutions exist which behave differently. 
It is possible to exhibit, in particular, the existence of a new continuous 
mode which decays exponentially, and not as an inverse power of time, as 
we will show in this paper. 

On the other hand, if B0 is constant, say C, or jumps from one constant 
value B01 to another constant value B02 (>BOO in some open interval L then 
that interval contributes to the discrete spectrum those values of co such 
that co = 4- C/,fp or kV~ < co <kVA2. The corresponding eigenfunctions are 
well-behaved. Sedlacek (1971) considered an initial value for small-ampli- 
tude electrostatic oscillations in an inhomogeneous cold plasma. Following 
Sedlacek's analysis, one may consider what happens to the above discrete 
spectrum when the jump in the magnetic field intensity profile is smoothed. 
This was done by Tataronis and Grossman (1973) and Tataronis (1975), 
who exploited the formal identity of the equations describing electrostatic 
oscillations in an inhomogeneous plasma and the Alfven wave propagation 
in an inhomogeneous medium and translated the results of Sedlacek (1971) 
into the MHD domain. Thus, it was found that, in the limit of small smooth- 
ing of the magnetic field, these discrete modes undergo an exponential 
damping due to poles on the nonprincipal Riemann sheets. Considerable 
controversy has apparently resulted in the literature regarding the implica- 
tions of this result. Lee (1980) and later CaUy (1991) pointed out that such 
decaying modes are not normal modes of the system (because the ideal MHD 
constitutes a Hermitian system and can support only real eigenvalues), and 
their decay rate cannot be interpreted as a dissipation rate, so that no phys- 
ical significance can be attached to them. However, Lee and Roberts (1986) 
argued that this decay rate can be viewed as that due to mode conversion 
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of the discrete modes into local oscillations within the smoothed resonant 
layer, while Steinolfson (1985) and Hollweg (1987a) argued that this decay 
rate is due to a vanishingly small dissipation in conjunction with cascading 
of energy to progressively smaller spatial scales due to phase mixing. Cally 
(1991) pointed out that the phase mixing is no consequence of the continuous 
variation of the field profile. 

The inclusion of additional physical effects such as finite-ion-Larmor- 
radius effects (Hasegawa and Chert, 1976) or resistivity I7 (Davies, 1984; 
Lortz and Spies, 1984; Ryu and Grimm, 1984; Pao and Kerner, 1985; Mok 
and Einaudi, 1985; Riedel, 1986; Poedts and Kerner, 1991) increases the 
order of the governing differential equation and eliminates the singularity 
associated with the Alfven resonance and hence the continuous spectrum. 
This leads to discrete modes which then decay exponentially and the corre- 
sponding eigenfunctions are localized and oscillatory in the resonant layer 
(Poedts and Kerner, 1991). Pao and Kerner (1985) considered the solvability 
of the eigenvalue problem for the resistive modes and its relation to the anti- 
Stokes lines for the problem. The resistive eigenvalue problem was shown 
to have no solution when two anti-Stokes lines cross the basic interval and 
one has two resistive layers on the latter even in the ideal limit. [This situation 
is similar to the one produced by viscous effects in hydrodynamic stability 
(Lin, 1957).] Mok and Einaudi (1985) studied the resistive modes (in the 
limit of small but finite resistivity) by using a boundary layer technique and 
claimed that there is a mode-damping due to resistivity. But since the damp- 
ing rate found by Mok and Einaudi (1985) was independent of resistivity 
when it is small, as Hollweg (1987b) pointed out, the mode damping is 
actually that due to resonance absorption. The role of resistivity is merely 
to remove the mathematical singularity (Y. Mok, personal communication, 
1986). Steinolfson (!985), however, argued that the damping rate (even to 
lowest order) should be dependent on resistivity when resistive effects are 
present, no matter how small. Ryu and Grimm (1984) and Reidel (1986) 
found that, in the presence of resistivity, the continuous spectrum is replaced 
by point eigenvalues on specific curves in the stable co half-plane which 
become independent of resistivity in the limit of zero resistivity. The damping 
of the resistive normal mode, in particular, remains finite in limit 17 ~ 0  
(Poedts and Kerner, 1991), so that these resistive normal modes do not 
correspond to the ideal MHD eigenmodes. Explicit solutions of the resistive 
modes valid in the neighborhood of the Alfven resonance layer have not 
apparently been given so far. We will address this issue in this paper. 

In a compressible plasma, the conditions for the existence of a continu- 
ous spectrum have not yet been clarified and existing accounts are mostly 
conjectural (Chert and Hasegawa, 1974; Grad, 1973; Goedbloed, 1983; 
Hameiri, 1985; Hollweg and Yang, 1988). In this paper, we will show that 
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the slow mode continuous spectrum exists only if the compressibility effects 
are weak. But strong compressibility are found to eliminate the continuous 
spectrum like the nonideal effects such as resistivity. We will show that 
even the discrete spectra behave differently in a compressible plasma--they 
undergo an exponential damping even in an ideal plasma if the com- 
pressibility is strong! 

In this paper, we adopt a plane slab geometry like many others previ- 
ously; though it is not directly relevant to fusion devices, it affords additional 
insights. 

2. DISCRETE MHD SPECTRUM IN AN 
INCOMPRESSIBLE PLASMA 

The MHD equations for an ideal incompressible plasma are 

V - V = 0  (1) 

DV 
p = - V v + ( V x B ) x B  (2) 

Dt 

OB V - - =  x (v  x n) (3) 
~t 

V" B = 0 (4) 

We have taken the density to be uniform so that the effect of magnetic 
field inhomogeneity on the Alfven spectrum can be understood more dearly. 

We consider free oscillations in a plasma infinite in the y and z directions 
and contained between two ideally conducting plates at x = x~ and x = x2 
and subjected to a nonuniform magnetic field Bo = B0(x)gy; the equilibrium 
state varies only in the x direction and is given by 

For linearized perturbations, we obtain from equations (1)-(4) 

V" ~ p / V V x J = 0  (6) 

On making a normal-mode analysis with Fourier decomposition in y 
and t according to 

Vx ~." Vx (x) e i(ky-~ (7) 
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it turns out that V~ (x) satisfies the equation 

dxxd {[c2_ V2(/)] d-~V~t-ax ) k2 [c2 -  V2(x)]Vx=O 

where 

2125 

(8) 

We next introduce 

W=c 2- V 2, G= WI/2V~ (15) 

so that equation (8) becomes 

G " -  k2-~ G=0 (16) 
2W 4W 2] 

Co 

k 

The boundary conditions are taken as 

X = X l ,  X2: Vx=O (9) 

We multiply equation (8) by the complex conjugate V* of Vx, integrate 
from Xl and x2 and use the boundary conditions (9) to obtain 

~ dV~ 2 2 2 
;x, (c2-V'~)(-~x +klVxl)dx=O (10) 

Writing c= cr+ ice, where cr and ci are the real and imaginary parts of 
c, and separating (10) into real and imaginary parts, we find 

;) (I V) 2_ gJ) +k21Vx( dx=O (11) ( d  - c, 
I 

x2 d V x  2 2 2 

Equation (12) shows that, if the integrand is well behaved, one has 

Ci---~0 (13) 

In view of this result, (11) implies that (c~- V~) must change sign for 
some x in (xl, x2) or that 

Cr='4-VA for some x~(xl,x2) (14) 
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where the primes denote differentiation with respect to x. We multiply (16) 
by G*, the complex conjugate of G, and integrate over x from xl and x2, to 
obtain 

([G'12+kZlG[ 2) dx+ jx ' 4 W  2 ( 2 W W " -  W'2)IG[ 2 dx=O (17) 
1 

This is true if either of the following conditions is fulfilled: 

and 

(i) G = 0  or VA=c (18) 

(ii) G ~ 0  or VA ~ c  (19) 

2 W W " -  W'2<0 

Thus, discrete MHD modes exist when (18) or (19) is satisfied. 
Away from the point x = x ,  where c 2 = V~, if we assume that W varies 

slowly with x, then, as a first approximation, we may take W" and W t2 to 
be small, and an approximate solution of equation (16) is 

G ,~ e -k(x- x.), x > x .  (20) 

Then, from (15), we have 

1 g ~ e -k(x-x*) (21) x (c  2 -  g ~ )  , x > x ,  

which is the WKB approximation to the true solution of equation (8) and 
is valid only for x r x , .  

As an example, consider the case wherein B0 = const. Then, equations 
(8) and (9) give 

[ d2 Vx 2 "~ 
(c 2 -  V]) ~-x2 - k  V,,)=O (22a) 

x = x~, x2: Vx = 0 (22b) 

This problem has two classes of solutions 
(i) Discrete modes, which satisfy 

d 2 Vx k 2 V~ = 0 (23a) 
d x  ~ 

x = xj ,  x2 : V~ = 0 (23b) 

This class is empty for the problem (22). This result also follows due 
to the violation of (19) for the present case. 
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(ii) Continuous modes, which satisfy 

c = 4- VA (24) 

On the other hand, if Bo(x) is continuous in an open interval/, then 
the interval I contributes to the spectrum those real values of the frequency 
o9 such that c = • V~(x) for some XeL 

If we have c 2= VJ for x = x , ,  then in the neighborhood of x = x , ,  
equation (8) becomes 

d2Vx + dVx k z V - 0  r/--z-w- - 77 x -  (25) 
ar/o dr/ 

where 1/_-__ x -  x , .  
The solution of this equation 

Vx = AIo(krl) + BKo(kr/) (26) 

where A and B are constants and Io(z) and Ko(z) are the modified Bessel 
functions of the first kind and the second kind, respectively. The power series 
expansion of (26) gives 

Vx=A (l +~ k2r/2 + . . . ) -  B(lnk~2 + Y)(l +k k2r/2 +" - ") 

+ B (~ k2r/2+ -- -) (27) 

where ~, represents Euler's constant. 
The behavior of Vx as 1/ passes from 17 < 0 to I/> 0 can be determined 

by imagining that equation (8) has been obtained by a Laplace transform 
with Im(og)<<Re(o9)~og. In view of Im(x)=0,  we find Im[k2V2(x)]=O, 
Im(Ok2V~/Ox), ~0, and the imaginary part of 

e v (x) = 0,2+ (x- x,)(aev ) 
E 

k ~x / ,  

=o92( I + / - x * + ' ' L  ") (28) 

leads to Ira(x,)~(2L/o9)Im(og)<0. As a result, 77 passes through q =0, 
arg(q) changes from 0 for q > 0  to rc for q < 0 ;  In 17 changes from lntol to 
In I r/I- iTr. The imaginary part in the latter expression represents the resonant 
absorption of the incident Alfven wave by the plasma. Alternatively, the x 
axis may be viewed as mapped onto a contour that passes below the real q 
axis in the complex 77 plane. 
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3. C O N T I N U O U S  M H D  S P E C T R U M  IN AN 
I N C O M P R E S S I B L E  P L A S M A  

In order to study the continuous spectrum, let us Fourier transform Vx 
with respect to y, 

;_~ Vx = e-ikYVx(x, y, t) dy (29) 
oO  

and formulate an initial-value problem for Vx with the boundary condi- 
tions (9): 

( 1 0 2  ) 0(~_~ ) [dV,~'OPX=O (30a) 

t = O: V~ = Vo, V., = V, o (30b) 

We introduce the Laplace transform 

L(x ,  s)= e-"V~(x, t) art (31) 

so that the system (30a), (30b) gives 

where g(x) is given by 

g(x)=_ff~ _k2V ~ + 1 (a2v, o t.2v ~ \ -~ -x  2 - ,~  ,,o) (33) 

Using the Green's function method, we construct an explicit solution 
of (32) in the form 

' g ( ~ )  dE Px(X)=[~_~ r r162 VJ(~)} ff'(O,, r 
(34) 

where 

IT/(O,, g'2) = ~, (x) O~(x) - 1/~l (x) O2(x) (35) 
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and 02, 02 satisfy 

\k ]\dx ] \ dx /-dxx 0 " : = 0  (36) 

0 , ( - 1 ) = 0 ,  02(1)=0 (37) 

Here we have dimensionless distances using the width 2a of the domain, 
which is now taken to be - 1 < x < 1. 

We may construct 01, 02 from two linearly independent solutions 
~'x,, Px2 of (32) as follows: 

0, = ~'x,(x) Vx2(- 1) - ~'~,(- 1) ~'~2(x) (38) 

02 = ~'x,(X) V~2(1) - Vx.(1) ~'~2(x), (39) 

Thus, 

ITV(O,, 0 2 ) = -  W(V~,, P~2)" A (40) 

where 

A -  Px.(-1) k'x2(-1) l 
V~.(1) P~(1) (41) 

Finally, we obtain the solution for V~(x, t) by means of the inverse 
Laplace transformation 

1 f~+ioo 
V~(x, t ) = ~ / j ~ _ , ~  p~(x, s) e"ds (42) 

It is noted that Green's function in (34) is a multiple-valued function 
of s with four logarithmic branch points on the imaginary axis of the complex 
s plane. These branch points are +/k VA(x), + ikV~( ~ ), which also represent 
the poles of the integrand in (34). In order to evaluate (42), we have to cut 
the s plane in such a way that Green's function in (34) is single-valued in s. 
A suitable Bromwich contour may be drawn to evaluate the contributions 
to the solution from the branch points and the poles. If the s plane is cut 
along the intervals connecting the pairs of branch points, the numerator of 
the integrand in (34) becomes single-valued. The cuts associated with the 
numerator have to be combined with the cuts associated with the denomi- 
nator to ensure the single-valuedness of the Green's function. There are also 
other poles of ~'x(x, s), which arise at 

# ( 0 1 , 0 2 ) = 0  or A=0 (43) 

This is simply the characteristic-value relation for the discrete spectrum of 
normal modes with Re(s)= 0. 
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Thus, V~(x, t) can be expressed as 

V~(x, t)=2~i f~+,o~ ~',(x, s )d 'ds  + Y. exponentials like d '  
o c  - i o ~  

(44) 

where the summation is taken over the discrete spectrum. In the first term 
on the right-hand side in (44), contributions from the simple poles as s =  
+ ik VA lead to terms like exp(:l: ik VAt), whereas the logarithmic singularities 
in ~1 and if'2 produce terms like (l/t)exp(zl:ikVM) (Lighthill, 1964). 

It is evident that continuous modes produced by a well-behaved initial 
perturbation will normally decay according to a power law. 

We next show that some special singular solutions can, however, behave 
differently. 

4. A SPECIAL SINGULAR M O D E  

Let us now take Bo(x)= const, and the initial conditions to be 

t = 0: Vx = Vo(x, k), Vx, = 0 (45) 

Equation (30a) then takes on the form 

(~_O 2 \/02 \ 
+k2V.~)[~x2-k2) Vx=O (46) 

Equation (46), in conjunction with (45), then gives the solution 

Vx(x, k, t) = Vo(x, k) cos kV~t (47) 

By inverting the Fourier transform with respect to y, we obtain the final 
solution 

V~(x, y, t) = ~ e ~ky Vo(x, k) cos k VAt dk 
- - 0 0  

= �89 V0(x, y+ VAt)+ Vo(x, y -  VM)I (48) 

where Vo(x, y) is the Fourier inverse of  the transform Vo(k, x). Equation 
(48) merely describes the propagation of a well-behaved initial perturbation 
with no damping. However, we will now show that some special singular 
solutions exist and do behave differently. 
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On taking the Laplace transform of (30a) and using (45), we obtain 

V x - k  Px - s ( v ~ - k 2 v ~  x ,~ 0: - "  2 (49) 
s~ + k2V~ 

x = - 1, 1 : ~'~ = 0 (50) 

The inverse Laplace transform of (49) gives for x < 0 or x > 0 

v~ - k 2 Vx = - �89 e-kVA'( V~ -- k 2 Vo) (51) 

As we saw previously with (23), there are no nonzero values of Vo such 
that 

r '~ -k2Vo=0 (52) 

x = - 1, 1 : Vo = 0 (53) 

so the right-hand side in (51) cannot vanish identically! 
In order to solve equation (51) with the boundary conditions (50), we 

construct a Green's function G(x, ~) which satisfies the following: 

(0~52-k2 ) G ( x , ~ ) = , ( x - ~ )  (54) 

x = - 1, 1 : G(x, ~) = 0 (55) 

x = ~ "  [G] =0,  ~x =1 (56) 

where the square bracket denotes the jump of its contents. 
One may find that 

{ - ~ s i n h k ( l + r  r  

G(x, ~ ) = (57) 

- ~ s i n h k ( l + x )  s inhk(1-~) ,  ~>x  

where 

s = k sinh k (58) 

Thus, the solution in terms of the Green's function has the form 

Vx(k, x, t)= - �89 G(x, 4) e-ikVA'(V~-k2V0) a~ (59) 
1 
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We consider the case where 

V~ - k 2 V0 = 6 ( x -  ( )  (60) 

so that (59) gives 

1 f s i n h k ( 1 - x )  s inhk( l+~) ,  ~< x  
Vx(k'x ' t )=-2sse-ikV~tx ~ s inhk(1-~) ,  ( > x  (61) 

Effecting the inverse Fourier trav.sform with respect to y, we obtain 

Vx(x, y, t) =~-~ e'kYVx(k, x, t) dk (62) 
- o o  

We close the contour of integration in (62) along the real k axis by 
an infinite semicircle in the lower/upper half-plane for y ~ 0, so that the 
contributions to Vx(x, yl t) come from the poles at k = T into, n = 1, 2, 3 , . . . .  

Thus, we obtain (61) and (62); we have 

- - s i n m r ( 1 - x )  s i nmr ( l+~)e  -~'~vAt, ~<x,  y . ~ 0  
Vx(x, y, t) = "= i 2nzc 

~=1 2mr s innr;( l+x)s inmr(1 ~)e -mrVAt, ~>x, y><O 

(63) 

These results reveal that these modes decay exponentially but not as a power 
of t. Observe that this damping is not a consequence of the continuous 
variation of the field profile, because the field intensity is taken to be con- 
stant; it is rather a consequence of the phase mixing of the various Fourier 
components like the Landau damping in the plasma kinetic model. [The 
phase mixing is believed not to be a consequence of the continuous variation 
of the field profile (Cally, 1991).] 

. M H D  S P E C T R U M  IN A R E S I S T I V E  P L A S M A  

The MHD equations for an incompressible resistive plasma are given 

OB 
- V ( V •  q V2B (64) 

& 

where r/represents the resistivity of the plasma. 

by 0) - (3)  and 
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As before, we consider free oscillations. On linearizing the perturba- 
tions, we obtain from (1), (2), (4), and (64) 

~ 2 " V" { [ ~ ( ~ -  r/V ) (B~ VVx}= 0 (65) 

On making a normal-mode analysis with the Fourier decomposition in 
y and t according to 

Vx ,~ Vx(x)  e i(ky-c~ ( 6 6 )  

it turns out that Vx satisfies the equation 

( d2 k2~1 V~=0 (67) -kZ[k2VJ-o~2-icorl \~x 2- ] j  

When the resistivity is small, it becomes important only near an Alfven 
resonance k2V,~(x,)=co 2. Thus, in the neighborhood of the latter point, 
equation (67) can be approximated by 

d4Vx[_ 2 [ d2Vx dVx ~V0=0 (68) 
de 4 )" l ~ - - ~ +  dr + 

where 

- - i k ( x - x , ) ,  k 2" 2 v;4-o~ = t - - I  ( x - x , )  
\ dx / ,  

and 

,~2=(dk2V~] 1 >> 1 (69) 
- \  dx ], cot I 

Equation (68) is similar to one which has been extensively studied by Wasow 
(1953) and Rabenstein 0958). 

In order to construct explicit solutions to equation (68), let us make 
the Laplace transformation 

;o Px(s) = e -s~ Vx( ~ ) d~ (70) 
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Equation (68) then becomes 

s4~'rx-~2[d (s2Vx"F ~'rx)]-'F ~l,2S~rx=O 

which gives 

(71) 

_ (s2+A1) I/2 //s 3 s 1 s)_ ~'x(s) - exp ~- -~-  ~ + ~ tan -1 (72) 

On inverting the Laplace transformation, we obtain 

Vx( 4 ) = fce ~r ~"~(s) ds (73) 

where C represents a dosed contour in the complex s plane. 
For large s, the integrand in (73) is dominated by the term exp(s3/3~,2). 

The quantity s3/3;~ 2 has a negative real part in regions of the complex s 
plane, for which 

27rn 7r 2 7r 2trn 2 
+--  + -  arg ~ < arg s <--  + + - arg A, (74) 

3 6 3 2 3 3 

Because of the terms in the integrand involving powers of a complex 
number, those regions in (74) which differ by changes in n by a factor of 3 
represent Riemannian sheets. Different choices of the contour C will produce 
different solutions Vx(4), and we may find four different contours which 
produce four linearly independent solutions Vx(~). However, each chosen 
contour represents a single solution valid for all 4- 

We next use the asymptotic method of steepest descent to evaluate the 
integral (73) for large 141. The dominant contribution comes from the saddle 
points given by 

df(s)_0 (75) 
ds 

where f(s) is the exponent involved in (73), given by 

s3 ( •177 
f(s)=~-~+s 4- tan-I s (76) 

Putting s = tan O, the saddle points which are the solutions of (75) are given 
by the roots of the equation 

tan 4 0 + ~a~ tan 2 0 + A2~ = 0 (77) 
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For large 141, (77) gives 

tan 20~p~-)~2~+ lk or (78a) 

where 0sp is the saddle point. 
Thus, when tan 2 0sp > 0 (i.e., ~ < 0), the integration through the saddle 

point gives an evanescent contribution (or a growing mode). On the other 
hand, when tan 2 0sp < 0 (i.e., ~ < 0), the integration though the saddle point 
produces an oscillatory exp[4-~iJ/22~(x-x.)3/2k 3/2] variation. The saddle 
point given by (78b) always produces an oscillatory mode. 

The above solutions are valid only in the neighborhood of the Alfven 
resonance layer co =kVA(x.). In order to obtain the complete solutions, one 
has to match asymptotically these solutions to those valid outside the reson- 
ance layer--an issue not dealt with in this paper. 

6. MHD SPECTRUM IN A COMPRESSIBLE PLASMA 

The MHD equations for an ideal compressible plasma are 

Dp + pV" V = 0 (79) 
Dt 

DV 
p = - Vp + (V x B) x B (80) 

Dt 

OB 
- -  = v x ( v  x n )  (82)  
Ot 

V. B = 0 (83) 

where y is the ratio of specific heats of the plasma. 
We consider free oscillations in a plasma subjected to a nonuniform 

magnetic field B0 = Bo~ and in equilibrium given by 

This magnetic field configuration, though apparently restrictive, is adequate 
for the resonance absorption of the slow mode, which requires Boy ./=0 
[Hollweg and Yang (1988), who call it the "'cusp resonance"]. Besides, this 
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field configuration actually enables one to study a compressibility-affected 
Alfven resonance. In contrast, for the more general case with the equilibrium 
magnetic field along the y and z directions and the perturbations propagating 
along the y and z directions, the Alfven resonance turns out (Hasegawa and 
Uberoi, 1982) to be unaffected by compressibility. 

We study linearized perturbations expressed in terms of normal modes 
like exp[i(ky-cot)]. Introducing the Lagrangian variable 

v =  (85) Ot 
it follows from (79)-(84) that 

pco2 x = ikBoBx (86) 
6/X 

~ dx (87) 

l~=- ~'P~ + ~x ) - ~x dp--2~ (88) 

where/~ =p + BoBy. 
We obtain from equations (86)-(89) (Hasegawa and Uberoi, 1982) 

d [ c2(l + VJ/a2)- VJ ~x l_k2po(c2_ V~)~,=O (90) 
PO 1_c2/a  2 

where a is the speed of sound in the plasma, a-(),po/Po) 1/2, and c = co/k. A 
more general version of equation (90) was given by Goedbloed (1983). 
Observe that equation (90) reduces to equation (8) when the speed of sound 
a is very large [as Hasegawa and Uberoi (1982) pointed out], so that c/a<< 1 
and V,4/a<< 1. 2 

2It is of interest to note that the inclusion of the thermal effects in the case of Alfven waves 
does not increase the order of the differential equation. This is in contrast with the case of 
longitudinal plasma waves, wherein the inclusion of the thermal effects enhances the order of 
the differential equation (Maggs and Morales, 1983). The latter is 

d~ d 2 2 q~ 2 2 2 _ V ~ +  (oj2_ co~ ) ~ _ d 

is the electrostatic potential, Vr is the thermal speed of electrons, and cop is the plasma 
frequency. 
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The boundary conditions are 

x = x l ,  x2: ~ = 0  (91) 

It is noted that equation (91) is not valid when c~a.  It is necessary to 
include the nonlinear terms for the case c = a. 

We multiply equation (90) by the complex conjugate ~* and integrate 
over x e ( x l ,  x2) and then use (91) to obtain 

x, C2(1 + V2/a 2)_ V~ d ~  +k2(c2 - vJ)IGI 2 dx=O (92) 
, 1 - c2/a 2 dx 

Putting c = c~ + iei and separating (92) into real and imaginary parts, we find 

-[(c 2 -c~Z)(1 + V]/a 2) - V 21 

f f~  x[1 2 2 2 - (c~ - ci)/a ] - (4c~c~/a2)(1 + V2/a 2) 
Po 1 2 2 2 2  4 

' - -  ( d r - -  C i ) / a  2 Ji- 4 G  ei/a 

1 2 2 2 dx=O (93) dx +k  ( C  r - - C  i - -  V2)[~xl  2 

! j2  I Id~x/dxl2 +k2lGl2]dx=O (94) 
2Cr Ci PO [1 - -  (C2r - -  c 2 ) / a  2] + 2 2 4 

. ,  (4Cr - -  Ci ) / a  

(94) shows that, if the integrand is well-behaved, we have 

ci = 0 (95) 

Using (95), we find that (93) becomes 

Po _ _  +k2(c~-gJ)lGI 2 dx=O (96) 
, l - c2/a 2 ax 

We have now two cases to consider. 
(i) a > cr globally. 

In this case, {c2(1 + V2/a 2) - V~} cannot be negative globally because 
c 2 -  V j will also then be negative globally and so equation (96) cannot be 
satisfied. But c~(1 + V2/a 2) - V 2 can be positive globally if cr lies globally in 
the window V~/(1 + VJ/a 2) < c 2, < VJ, so that equation (96) can be satisfied. 
Thus, er2(1 + V.~/a2) - V~#O for all xE(x , ,  x2) if VJ/(1 + V~/a2)<e~ < V.~ 
globally. However, c~(1 + VJ/a 2) - V~=0 for some x~(x l ,  x2) if the latter 
condition is violated. Note that the window ( V J / ( I +  VJ/a2), VJ) will 
disappear in the limit a --* ~ ,  so that we revert to the known situation for 
the incompressible case, viz., that c , -  VJ= 0 for some xE(x l ,  x2). 
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(ii) a < c~ globally. 
For this case, since 

we have 

o r  

g 2 >  2 2 
/ . , ] - -  C r 

2 

c_, v2> 1/2> vS-d 
a 2 

(97) 

( cr 1 + - V2>0, a<c~ (98) 
a /  

for all xe(x l ,x2)  so that c~(l+ V2/a2) - VJ#O for all xe(x~,x2). This 
implies that compressibility effects, if strong enough, can eliminate the slow- 
mode continuous spectrum just like the nonideal effects such as resistivity, 
though without causing an increase in the order of the differential equation. 

The singularity where c2(1 + V2/a 2) - 1 / 2  = 0 was also mentioned by 
Roberts (1981) and Hollweg and Yang (1988). 

If we have e= V2/(1 + V2/a 2) for x=.~, then in the neighborhood x=  
2, equation (90) becomes 

d2~x + k2c4 
d~x 4 ~x = 0 (99) 

1/ dr/2 dr/ a ( c 2 - a  2) 

where 

d -  , r~--x-2 

Let us assume that d > 0. The solution of equation (99) is 

I + -c=)j r a=>c= 
(100) 

where A and B are constants. The power series expansion of (lO0) gives 

[ "  ] ~x=A 14a(a2_c2) r / + . . .  

'BSln[kC2~L r~ ,/2 k2c4 

+BLdt(a2_c2) q + . . .  , a2>c 2 (101) 

where T is Euler's constant. 
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It turns out that even the discrete MHD spectrum in a compressible 
plasma behaves differently. Let us consider the case where Bo(x), po(x), and 
po(x) jump from one set of constant values Bo~, Po~, and po~ for x < 0 to 
other constant values B02, Po2, and pOE for x > 0, and the speed of sound a 
is constant. In this case, we obtain from equation (90) 

x >< 0: d2~, k2(c 2 -  V],.~)(1 -c2/a 2) ~x=0 (102) 
2 2 dx ~ d ( l  + VA,~/a ) -  V~,.~ 

so that 

x><0:   ,,2=A,2expI- kxI l"21 (,03) 
' [ Lc'(1 + V~,.Ja ~)- V),.2I ) 

The continuity of the normal velocity and the total pressure at the 
interface x = 0 gives 

x = 0 :  [ ~x] = 0, I c2(1+1 --c2/a 2V2/a2)- V2 d~X]dxJ= 0 (104) 

where the square bracket denotes the jump of its contents. 
Using (103), we find that (104) gives 

1 2 c 2 = a 2 + i ( Vm + V]2) + [a  4 --[- ( V21 -Jr- V 2.421a211/2] ( 1 0 5 )  

In the limit a ~ ~ ,  (105) reduces to the result for an incompressible plasma, 
namely, c 2= �89 + V]2). However, (105) indicates that the discrete spec- 
trum in a compressible plasma decays exponentially provided 

2 3 2 a <~(VAI + V]2) (106) 

whereas its counterpart in an incompressible plasma is undamped. There- 
fore, the compressibility effects, when strong enough, appear to cause damp- 
ing of the discrete modes. Physically, this is due to radiation to infinity of 
the energy associated with the perturbation by the sound waves. 

7. CONCLUSIONS 

The continuum MHD modes produced by a well-behaved initial pertur- 
bation are known to decay according to a power law. However, the analysis 
in Section 4 appears to show that some special singular solutions exist and 
behave differently. There seem to exist continuous modes which show expo- 
nential damping and are different from the ones resulting from a continuous 
variation of the magnetic field. Section 6 shows that discrete and continuous 
spectra behave differently in an essential way in a compressible plasma-- 
whereas the discrete modes undergo an exponential damping even in an ideal 
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plasma, the slow-mode continuous spectrum is eliminated if the com- 
pressibility effects are strong. The latter result is also brought about by the 
nonideal effects such as resistivity, though in a different manner, by increas- 
ing the order of the differential equation. Section 5 presents explicit solutions 
to the resistive MHD modes which are valid in the Alfven resonance layer 
at ~o = k V ( x , ) .  
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